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The MLS grid free rezone method, a simple, flexible finite difference 
method to solve general mechanics problems, especially detonation 
problems, is proposed in this paper. The spatial points that carry time 
dependent data are distributed in space in such a way that provides 
nearly uniform spacing of points, accurate presentation of boundaries, 
easy variation of resolutions and arbitrary deletion of irrelevant regions. 
Local finite difference operators are obtained with simple MLS 
differentiation. There is no specific topological or geometrical 
restriction with the distribution of data points. Therefore this method 
avoids many drawbacks of the traditional CFD methods. Because of its 
flexibility, it can be used to simulate a wide range of mechanics 
problems. Because of its simplicity, it has the potential to become a 
prefened method. 

Most traditional CFD methods, from a SPH view, can be considered as 
special cases of grid free methods of specific kernel functions. Such a 
generalization allows the development of a unified grid free CFD code 
that can be switched to various CFD methods by switching the kernel 
functions. Because of the flexibility in management and simplicity of 
coding, such a unified code is desired. 

INTRODUCTION methods allow the data points to move 
with the material. Usually those data 

In simulation of problems in mechanics, points must obey certain topological 
it is necessary to describe the dynamical constraints. The material can be traced 
system with a finite set of data points. easily. However it is difficult for a 
Determination of positions of the data Lagrange method to deal with large, 
points is essential. Traditional Lagrange arbitrary deformation. 



An Eulerian method, in which the data 
points are fured in space, can be fast and 
accurate. An Eulerian method requires 
grid in order to provide simple finite 
difference approximation of spatial 
derivatives. Because the regularity of 
grid has to be maintained, an Eulerian 
method is difficult to manage in cases 
that local high resolution is mandatory. 
Deletion of unnecessary portion of the 
computation domain is not an easy task 
to manage with grids. Much effort has 
been spent on finding reasonable ways of 
grid book keeping. We want to point out 
that these efforts shall not provide an 
essential solution on this issue. 

In this paper, we propose a methodology 
that we call MLS grid free rezone 
method. It is an extension of the MLSPH 
method by Gary Dilts[''. This method is 
proper for the calculation of general, 
complex physical processes such as 
detonation problems. We completely 
give up the ideas of element andor grid. 
Instead, the spatial points that carry data 
can be arbitrarily distributed in space. 
We derive a set of finite difference 
scheme with simple MLS differentiation. 
The accuracy of these difference 
equations is comparable to traditional 
methods. The boundaries can be 
represented with data points and 
treatment of interface between different 
objects is simple. 

There are two essential phases associated 
with MLS grid-free method. A data point 
distributor, and a set of MLS algorithm. 
The data point distributor arranges the 
data point set in such a way that the data 
points are evenly spaced; boundaries are 
sharply represented with data points. 
MLS differentiation is used to derive the 
local finite difference operators. MLS 

interpolation is used for rezone when 
needed. The data points can be fixed in 
space (the Eulerian mode) or moving 
with material (the Lagrange mode) and 
the two modes can switch to each other 
easily. Large deformation can be easily 
traced with the Lagrange mode and no 
topological constraints are required. In 
the case that variable resolution or 
arbitrary deletion of domains is desired, 
MLS grid free methodology works with 
no extra cost. 

In a global view, MLS grid free 
methodology is a simple, unified fiame 
that consists with a class of CFD 
methods. Many existing CFD methods 
can be considered as subsets with 
restrictions of this general, flexible 
method. MLS grid free methodology 
provides simple derivation of equations 
of motion, explicit local error estimator, 
sharp boundary representation with data 
points, and easy implementation of 
boundary conditions. Despite some 
moderate numerical complexity that is 
associated with the point distributor, it is 
a very simple method to implement and 
to manage. 

MLS DIFFERENTIATION 

Moving-Least-Squared method (MLS) 
has a close relationship with the local 
finite difference of spatial derivatives. 
To be specific, the finite difference of 
spatial derivatives based on the linear 
combination of point data, especially 
grid data, is equivalent to special cases 
of direct differentiation of Moving Least 
Squared functions. By varying the 
weight function (the kernel), one may 
obtain various expressions of local 
spatial derivatives to any order with any 
specified accuracy. 



This point is very easy to show, since the 
MLS functions interpolates any specified 
set of functions exactly, one may choose 
the function set to be ( I ,  x, x2... x"). A n  
analytical function at can be expressed 
as its Taylor series 

( X - - X j ) j  +O(x-xj)"+'. " f ['](x) 
f b j )  = x- 

j=o i! 
The interpolation off($ using the MLS 
functions is defined as 
f * ( x ' )  = c f ( x ' j ) $ j ( x ' j  - 2). 

j 

With the substitution off($ into the 
MLS interpolation, it is seen clearly that 
except the very first term, all power 
terms shall vanish till the order of n. 
Thereforefh) is the value of fb), plus 
a remainder of O[ (h)"+'/(n+l)!], where 
Ax is the size of the neighborhood. 

By taking the derivatives of fh), one 

immediately realizes that is 
the coefficient in fkont of the function 
valuef&$ in a finte difference form of 
the Ph derivative of f at x. Similar 
analysis for multi-dimensional cases can 
also be shown easily. Mathematically 
speaking, any specified order of local 
derivatives can be obtained by MLS 
differentiation to any specified accuracy 
if enough neighbor points are involved. 

p ] ( x ' -  Z j )  

DATA POINT DISTRIBUTOR 

The flexibility of the MLS grid flee 
method avoids certain constraints 
associated with the traditional CFD 
methods. We are allowed to mange the 
data points in such a way that helps the 
calculation. The particle spacing is 
controlled in such a way that (1) to 
reduce the local truncation error, (2) to 
accurately represent the boundaries, (3) 
to allow easy variation of resolutions, 

and (4) to fkeely exclude unnecessary 
domains. 

We implemented an intrinsic Huygens 
construction technique to identifl the 
level sets of the signed minimum 
distance functions. The data points are 
placed evenly on the level curves. The 
distance between neighbor level curves 
is nearly uniform and equal to the 
particle spacing. The boundary of a 
region that requires special resolution 
can be treated as a level set in which the 
particle spacing is equal to the required 
resolution. After all of the level curves 
are filled with data points, one can delete 
unusable points arbitrarily. 

PARTICLE AND VORONOI CELL 

We assume that each interior data point 
is associated with a definite volume - the 
volume of its Voronoi cell. The sum of 
these volumes represents the physical 
volume occupied by the material. For a 
single data point, the mass, momentum 
and energy it carries can be defined as 
well as its volume. Thus it is sensible to 
call these data points 'particles'. This 
definition is geometrical compared to the 
numerical definition of particles in SPH. 
Because the boundary normal vector of a 
Voronoi cell is trivially identified, it is 
easy to compute physical fluxes that 
enter or leave a particle when required. 

PHANTOM PARTICLES 

The real material objects are coated with 
phantom particles. These particles help 
to accurately represent the boundaries. 
They make each real data point an 
interior one. In addition they carry 
environmental properties (or some other 
specified properties) so the treatment of 



boundary condition can be naturally 
integrated into the solution of governing 
equations. Furthermore they reduce 
instability of the method. Last but not 
the least, phantom particles help to avoid 
extrapolation when solution is evaluated 
at boundary to maintain accuracy. 

NEIGHBOR SEARCH 

The particle system is contained within a 
search matrix (a regular mesh). Its mesh 
size is comparable to the search length. 
For a particular particle A, the neighbor 
search only involves the particles that 
live in the cells directly connected to the 
cell that particle A lives. The cost of 
such a search method is evidently linear. 

BOUNDARY PARTICLES 

A very simple method to detect particles 
on the boundary is implemented. The 
basic idea is, a boundary particle is an 
‘open’ one. Let the particle in concern be 
at the origin, and all the other neighbors 
be projected to a unit circle, the 
maximum one of the minimum span of 
angles formed by two neighbors must be 
greater than some critical value (we used 
d 3  and it seems working fine) for 
boundary particles. To further ensure the 
method to be reliable, the neighbor set 
used in determining angular spans also 
includes the neighbors of neighbors of 
the particle in concern. Our practice 
indicates that this simple boundary 
detection method is quite reliable. 

EPRESENTATION OF OBJECTS 

A boundary is represented with boundary 
particles. We fust detect the particles at 
the boundary, and then carefully link 
them to form curves. Consistency 

between the numbering of boundary 
particles and the arc-length is essential. 
The boundary curves are considered as 
level-set curves of signed minimum 
distance of function value zero. Interior 
particles are packed in a similar fashion 
on level curves of negative values. 

ORDER BOUNDARY PARTICLES 

Starting fiom an arbitrarily selected 
boundary particle, one needs to find an 
effective algorithm to determine the next 
boundary particle, till the starting 
particle is again found. The basic 
approach we used is to find the interior 
particle nearest to a known boundary 
particle, then apply the right hand rule to 
determine the next boundary particle to 
be linked. Of course we first consider in 
the neighbors. When the boundaries 
have sharp turns, multiple candidates 
may be found. We take the right most 
one to fulfill the right hand rule. 

A check to eliminate misidentifications 
is to examine the original particle 
number on boundaries. If the natural 
numbering of boundary particles is 
violated, we use the original order of 
boundary particles. 

TREATMENT OF BOUNDARIES 

Currently we treat an interface particle as 
an interior particle, if this particle is 
under compression or is moving toward 
the interface. An interface particle is 
treated as a fiee boundary particle if it is 
bearing tension and is moving away 
fiom the interface. This simple treatment 
provides acceptable result. 

In the treatment of fiee boundary 
particles, we use phantom particles to 



carry environment pressure. We also 
interpolate the environment pressure 
with the distance fiom the center of 
interior particles to the boundary as if the 
pressure is applied right at the boundary. 
This helps the smoothness of boundary. 

A MONOTONIC ESTIMATOR OF 
THE SECOND ORDER 

The natural neighbors of a given point A 
form a convex polygon P, with A as an 
interior point of P. From the theory of 
linear programming, A's coordinates can 
be expressed as a linear combination of 
the coordinators of the corners of P, or 
A's natural neighbors in the format 

Herej is the numbering of the neighbors. 
For an analytical function, its value at A 
can be interpolated with exactly the same 
coefficients using the neighbor values 
with an error that is at most of the 
second order. This is easy to be 
examined with a Taylor's expansion at A. 
The monotonicity is achieved with the 
positiveness of the coefficients. 

In general, the neighbors found are not 
necessarily the set of natural neighbors. 
Thus there is no convexity available. 
However, one may project the neighbors 
onto the surface of a unit sphere centered 
at A and apply geometrical similarity to 
obtain a similar second order monotonic 
estimator. This estimator is useful in the 
convection phase of the Eulerian mode. 

MLS GRID FREE METHOD 

MLS grid fkee method can be outlined as 
the following. The set of points that 
carry data does not have to obey any 

local topological constraint. A set of 
phantom points can be added to this 
point set. One first searches for the 
neighbors of each point. Then one 
rewrites the equations of by evaluating 
the derivatives with MLS differentiation. 
The time derivative at a point can be 
estimated fiom its natural neighbor with 
the second order monotonic estimator for 
monotonicity. The time integration may 
be done with a numerical integrator or a 
Runge-Kutta like method. 

The boundaries can be represented with 
boundary particles. Phantom particles 
ensures every data point to be interior, 
and provide boundary conditions. 
Rezoning may be done to maintain 
particle spacing when needed. For 
rezone to be effective, it is essential to 
correctly identifl boundary particles and 
to connect them in a correct order. 

TRIDITIONAL METHODS 

Traditional finte difference methods 
with grid will become only degenerated 
cases of MLS Grid Free methodology. 
For example, with a uniform grid in two- 
dimension, let point AI to be located at 
(O,O), its natural neighbors will be 
located at (A2, A3, A d ,  A5) = {(O, I), (I, 
0), (0, -I), (-I, 0)). By taking the MLS 
hctions with a constant weight 
function, one finds 

2 2  ($l=l-x - y  7 

Y .. 
($4 ='(x-l),q& =-(y-Q. Y 

2 2 
2 2  One sees they interpolate {I, x, y, x , y } 

exactly. If one interpolates functionAx,y) 
5 

f ' t x , y )  = c f t A j ) 4 j t x d )  
j=1 



By taking the Laplacian of the function 
f*(n, y), one finds 

It is exactly the difference LapZacian 
operator on uniform grid. One may also 
obtain the first derivatives by MLS 
differentiation only once. At (O,O), we 
obtain the center difference format. 

n % Y )  =~f(~)+f(~+f(4)+f(%>+f(4). 

A UNIFIED METHOD 

We indicate that almost all kind of CFD 
methods can be more or less considered 
as SPH methods with specific kernels. 
From this point of view, many desired 
CFD methods may be implemented with 
a unified grid fiee code with simply 
changing kernels and data point 
distribution. The unified code should be 
easily managed and the programming 
work should be simple. Furthermore the 
transformation between different CFD 
systems can be easily done with MLS 
rezoning method. 

REZONING 

Rezoning is performed mainly to 
maintain particle spacing, so to reduce 
instability and to keep the accuracy of 
spatial derivatives. Large time steps are 
obtained right after rezoning because the 
particle spacing is regularized. Material 
intrusion can also be prevented if the 
rezoning is done before the intrusion 
occurs. In the case that large particles 
and small particles meet together, it is 
difficult to keep the symmetry in 
neighbor search (Le., if a is b's neighbor, 
then b is a's neighbor too) with particle 
diameters as search length. To prevent 
losing accuracy caused by losing 
symmetry, a rezone is perhaps the most 
convenient treatment. MLS interpolation 
in the rezoning conserves mass, volume, 

momentum and energy of the system 
with at least the second order local 
accurac+21. 

LINEAR VORONOI ALGORITHM 

We calculate the Voronoi cells of a 
particle fiom its neighbors. By 
definition, this method is of the order 
O(n) for an n-particle system. Compared 
to other optimized Voronoi solvers, this 
method is the fastest when n is large, 
provided that the neighbor search has 
been done in advance. However, the cost 
of the neighbor search method we use is 
also of the order O(n). Therefore this 
method is clearly more advantageous 
when n is large. 

We describe this method with the 
construction of a three dimensional 
Voronoi cell. We assume a given interior 
particle A to have Mneighbors and all 
A's natural neighbors are included. The 
first step is to find the closest neighbor 
of A, so to define the first facet. Next, 
one finds the smallest distance fiom the 
origin to all possible edges on this facet; 
the first edge is then determined. The 
third step is to find the smallest distance 
fiom A to all of the possible vertexes on 
the first edge, so to determine the first 
vertex on this facet. The neighbor 
responsible to this vertex also defines the 
next edge. To determine the next vertex, 
one finds the smallest distance fiom all 
of the possible vertexes on this edge to 
the last vertex. Convexity is checked by 
excluding all the vertexes that are 
located on the opposite side of the facet 
defined by the last neighbor point that 
corresponds to the last edge. One repeats 
this procedure until the first vertex is 
found again. Up till now the first facet is 
completely determined. We have also 
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No points will be left uncounted. Such a 
method can also be used to propagate 
three-dimensional surfaces according to 
intrinsic geometrical laws, because the 
local geometric features of the surface 
are well defined with neighbors. When a 
method to arrange data points nearly 
uniformly on three-dimensional surfaces 
is given, a rezone algorithm similar to 
the two dimensional algorithm described 
in this paper can also be implemented. 
We suggest a Huygens construction like 
algorithm to determine level-set curves 
on the surface and put points evenly on 
the level curves, similar to what we have 
done for the two-dimensional method. 

TREATMENT OF ]FRACTURES IN 
TWO-DIMENSIONAL 

In the two-dimensional case, with the 
specific method we used to pack 
particles, it is a simple task to detect and 
deal with fractures. The idea is based on 
the consistency between the numbering 
of boundary particles and continuation of 
the arc-length. When fracture occurs, the 
continuation of arc-length is broken. 
Interior particles become boundary 
particles and the original numbering of 
boundary particles with the order of 
natural numbers is lost. It is very easy to 
determine where the fracture occurs. In 
the case that a piece of material is going 
to split to two pieces, the natural 
numbering of the particles on the 
original boundary becomes partially 
naturally numbered on two separate 
closed curves. The fractured region is 
where the disconnection of natural 
numbering of boundary particles occurs. 
This helps to accurately determine the 
newly formed pieces. The reliability of 
this method is evident by nature. 

BURN MODELS 

Various burn models can easily be 
implemented with MLS grid free 
method. Currently our code include the 
following burn models 

1). Programmed Bum: With given 
locations and ignition time of the 
ignition points and the normal 
detonation velocity (CJ velocity, say), it 
is easy to calculate the detonation 
arriving time for each explosive particle 
confiied in a convex region by 
calculating the distance from a particle 
to the closest spark. When the region of 
explosive is not convex, the burn time 
can be determined with level-set curves. 

2). Neighbor Bum: It is assumed that 
only burning neighbors can ignite an 
explosive particle. When a particle has 
not been ignited but one or more 
neighbor particles has started to burn, the 
burn time of this particle then can be 
calculated by the distance of this particle 
to its burning neighbors, divided by the 
local detonation velocity. Of course the 
smallest burn time is selected. To be 
exact, the burn time of the particles 
closest to the spark is determined with 
their distance to the spark. After that, in 
most cases, at every time step there shall 
be more than two burning neighbors of a 
unburnt particle, the burn time of this 
particle is determined with the burn 
times of two burning particles with a 
geometric method. If there is only one 
burning neighbor, the burn time is 
determined directly by the distance 
between the two particles. The burning 
time is dynamically determined. In the 
case that programmed burn is applicable, 
this burn model is consistent to the 
programmed burn. However if the local 
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Figure 3. The mass-distribution. 

less as specific cases under a unified grid 
free frame. Thus it is possible to develop 
a unified grid free code that contains 
many CFD methods by including various 
kernel functions. Most importantly, the 
coding work shall be minimized. 

The data point distributor is designed 
under the geometrical requirements that 
data points are uniformly spaced and the 
material boundary is represented with 
data points. It treats local variable 
resolution with ease; such kind of job 
may require implementation of AMR. 
The particle distributor reduces the 
truncation error. It also optimizes the 
number of data points. Furthermore, it 
sharply defines the material boundary. 

The boundary treatment in MLS grid 
free method is all natural with the 
employment of phantom particles that 
serve as environmental particles or 
image data points. Furthermore they not 
only simpliQ the implementation of 
boundary conditions, but also help the 
accuracy and stability of this method. 

We list some of the benefits of MLS grid 
free method as the following 

a). Trivial deletion of domains. 
b). Trivial variable resolutions. 
c). Sharp presentation of boundaries. 
d). No diffusion or intrusion between 
material boundaries. 
e). Generalization of traditional CFD 
methods. 

MLS grid free implementation in three- 
dimensional should be a straightforward 
extension of its two-dimensional case 
provided that a three-dimensional data 
point distributor is implemented. We 
have described in this paper some 
practical methods to construct the three- 
dimensional particle distributorh-ezoner. 
However, there has not been such an 
implementation in the literature. 

MLS grid free methodology has been 
successful so far in dealing with various 
problems in mechanics, especially for 
detonation problems. It is expected much 
more problems can be solved with this 
approach because its flexibility and 
simplicity. It has the potential to become 
a very general, powerful method in 
computational fluid dynamics. 
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